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Abstract. The Patterson function can reveal the
modulation of a basic structure if its summation
terms include only satellite reflections. Exam-
ples of Patterson summations for various types of
modulated structures illustrate the difficulties of
interpretation and the bias occurring in the
determination of the amplitudes and phases of
the modulation. The opportunity to use the
Patterson function to determine modulated
structure is discussed.

Introduction. The Patterson synthesis has been
shown to be useful to study the structure of one-
dimensionally modulated crystals (Steurer,
1987, and references therein). It provides a
straightforward means to determine directly
from the observations the relative amplitudes
and phases of correlated atoms. Ilowever, the
width of the maxima, the various types of
disorder and the limits of observability are
factors which seriously affect the method.

Examples will illustrate how summations in-
cluding low intensities (this is often the case for
satellite reflections) create systematic errors and
lead to large deviations of the information
deduced from (3+1)-dimensional Patterson
maps. Summations including only satecllite
reflections reveal the deviations from the basie
structure. They are, however, affected by the
width of the atomic electronic peaks.

Definitions. If we consider a reciprocal lattice
generated by the vectors a*, b*, ¢*, q = aa* +
Bb* + yc*, where at least one of the a, 8, v is
‘irrational’ (large superstructure), the Fourier
and Patterson summations are direct extensions
of the three-dimensional cases (Steurer, 1987):
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The real crystal in K3 is defined by the hyper-
plane:

t=ax + Py + yz.

If the sum is restricted Lo satellite reflections
only, the corresponding (3+ 1)-dimensional
Fourier or Patterson will be called the difference
function, abbreviated (3+ 1)FDF and (3 + 1)PDF.

Examples. In what follows, we shall use dif-
ference functions only. This restriction is guided
by practical reasons: we consider modulated
structures showing small deviations from the
basic structure as is mostly the case (and implicit
in their definition). Such deviations of the
electronic densities will lead to full Patterson
summations with maxima, proportional to the
square of the electron densities, too small to be
observed.

The modulated phase of (Cgll7NIl3)CdCly
[abbreviated C3CD (Doudin & Chapuis, 1988)|
and two hypothetical structures will be used to
calculate Patterson and Fourier functions. Their
characteristics are given in Table 1.

(a) Displaucive modulation. A (3+ 1)FDF may
be interpreted as the difference between a
density modulated with the phase ¢ and a density
independent of ¢, corresponding to the average
structure. It is clear that the largest difference
occurs when the amplitude is maximal (Figs. 1,
2). Peaks appearing ina (3+ 1)FFDF have:

(1) a phase @may at which the displacement
from the average position dyis maximal;

(ii) a position dy + A where A is the ampli-
tude of the modulation and k¥ = 1 reaches one
when A increases (Fig. 2).

The value of x higher than one is due to the
space extension of the atomic peaks. This effect
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Table 1. Characteristics of the test structures

Superspace group PP%(O,,B,O) with $=0.3
Cell dimensions 10X10%x10 A
a;=a,=a3=90"
Number of reflections 13 962 (satellites of first
and second order)
(sinBYA oy 0.65 A-1

Test structure 1

Cl1in(0.1,0.2,0.3) with
occupancy P=0.5

u,=0.3cos2n(t+(1/8)]

u,=0.4cos2n¢

u,=0.1cos2n{t+(1/4))

Clin(-0.1,-0.2,-0.3)
with P=0.5

u, =0.3cos2n(t+(3/8)]

u,=0.4cos2n(t+(1/2)]

u,=0.1cos2n{¢+(1/4)]

Test structure 2
Clin(0.1,0.2,0.3)
with P=0.5-0.2sin2nt¢
u, =0.3cos2n(t+(1/8)]
u,=0.4cos2nt
u,=0.1cos2n{t+(1/4)}
Clin(-0.1,-0.2,-0.3)
with P=0.5+0.2sin2nt¢
u, =0.3cos2n(t+(3/8)]
u,=0.4cos2n(t+(1/2)]
u,=0.1cos2n{t+(1/4)]

was seriously underestimated in the article cited
previously. The author considered examples with
fictitious and very narrow atomic peaks.

A (3+1)PDF can be easily interpreted as an
autocorrelation function concerning peaks

Fig. 1. (3+ 1)FDF of the test structure 1. The Fourier sum-
mation is integrated along y and z within the limits
0.05=y=<0.35,0.2=2=<04,

defined with the (3+ 1)FDF function (Fig. 3). In
this case, a multiplicative factor k(A;) + x(A9)
has to be taken into account to determine the
sum of the amplitudes Ay, A9 of the modulations
concerning correlated atoms. This factor is only
approximately one if the sum of the amplitudes is
higher than 0.5 A. The modulated structures
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Fig. 2. Comparison between the average electronic density of

the Cl atom (test structure 1) and the displaced density at a
phase ¢p,,. (@) Along x with ¢, =1/8; (b) along y with
Pmax =0; (c)along z with ¢, = 1/4.
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rarely show such large values. Table 2 reveals
the differences between estimated amplitudes
and refined values for C3CD.

(b) Displacive and occupational modulation.
In a displacive modulation case, the information
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Fig. 3. (3 + 1)PDF of the test structure 1. Mazxima appear at
U=2dy=0.2, T=2¢,+1/2 and U=2dyt2A, T=2¢,
0.2sV=<0.6,05=W=0.7).

Fig. 4. (a) (3+1)FDF of the test structure 2 (0.0=x<0.2,
0.2<2<0.4).(b)(3+1)PDF of the same atom correlated with
that generated by the inversion center (0.05=<U=<0.35,
0.5=W=<0.7.
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for the differences of phases concerning the cor-
related atoms remains. However, difficulties will
appear if an occupational contribution to the
modulation exists (test structure 2). In this case,
maxima appearing in a (3+ 1)FDF may be wider
(Fig. 4a): the decrease of the difference between
the displaced and the average electronic densities
(moving the phase away from ¢max) can be
reduced (or increased) by the change of the peak
height corresponding to the modulation of
occupation.

Interpretation difficulties arise furthermore
from differences of transformation of a scalar
(amplitudes of the occupational modulation) and
a vector quantity (amplitudes of a displacive
modulation) under an element of the superspace
group. In our test example the only non-
translational element is the inversion center at
the origin. The occupational part of the correla-
ted atoms creates a maximum at T = }. The dis-
placive part has maxima at T =2¢¢ and 2¢o + 3
[the modulation has the form Acos2n(t + ¢p)l.
Thus the Patterson summation will be strongly
dependent on the phase ¢ (see Figs. 4b, 5). Even
in a simplified case, the deduction of any
information about the amplitudes and phases
will be difficult.

Table 2. Comparison between amplitudes of
modulation deduced from the Patterson maps
and the refined values for C3CD

Sum of Refined Absolute

Atoms amplitudes  value value(A)
Cl,-Cl, av 0.085 0.0596(8)  0.338(8)
Cl,-Cl, AW 0.023 0.0118(1)  0.296(6)
Cl,-Cd AW 0.025 0.0122¢1)  0.303t4)
cl,-Cl, AW 0027  0.0140(1) 0.351(4)

U axis

Fig. 5. (3+1)PDF of the test structure 2 0.2=V=0.6,
0.5=W=0.7).
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Conclusion. In most cases, Patterson sum-
mations will not characterize in a precise way
modulated structures. Even in simplified cases
involving only a few atoms, the interpretation of
(3+1)-dimensional Patterson maps can be
complicated. The question remains, however: is
the Patterson method useful for the deter-
mination of modulated structures?

The answer is affirmative if we wish to
determine the type of modulation occurring
(displacive, occupational, or both): the width and
the position of maxima represent characteristic
factors. The answer is different if we need
information about the amplitudes and the
phases. The Patterson method is useful if a 'trial-
and-error' procedure does not yield results. This
occurs when the structure does not exhibit any
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atom with large amplitudes or if many atoms are
involved in the resolution of the structure. This
case corresponds to the problems presented in the
preceding paragraphs whereas the second creates
interpretation problems for the Patterson owing
to the large number of overlapping maxima.Thus
the contribution of the Patterson method
isrestricted. In our opinion, a reasonable balance
should be found between the interpretation of
complicated Patterson maps and the time
dedicated to more careful measurements of low-
intensity reflections.
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